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Abstract

A general plane wave decomposition procedure that determines both the wave amplitudes (or the reflection coefficient)

and the wavenumbers is proposed for in-duct measurements. To improve the quality of the procedure, overdetermination

and a nonlinear least-squares procedure is used. The procedure has been tested using a six microphone array, and used for

accurate measurements of the radiation from an open unflanged pipe with flow. The experimental results for the reflection

coefficient magnitude and the end correction have been compared with the theory of Munt. The agreement is very good if

the maximum speed rather than the average is used to compare measurements and theory. This result is the first complete

experimental validation of the theory of Munt [Acoustic transmission properties of a jet pipe with subsonic jet flow, I: the

cold jet reflection coefficient, Journal of Sound and Vibration 142(3) (1990) 413–436]. The damping of the plane wave (the

imaginary part of the wavenumber) could also be obtained from the experimental data. It is found that the damping

increases strongly, compared with the damping for a quiescent fluid, when the acoustic boundary layer becomes thicker

than the viscous sublayer. This finding is in agreement with a few earlier measurements and is also in agreement with a

theoretical model proposed by Howe [The damping of sound by wall turbulent sheer layers, Journal of Acoustic Society of

America 98(3) (1995) 1723–1730]. The results reported here are the first experimental verifications of Howe’s model. It is

found that the model works well typically up to a normalized acoustic boundary layer thickness dþA of 30–40. For values of

a dþA less than 10, corresponding to higher frequencies or lower flow speeds, the model proposed by Dokumaci [A note on

transmission of sound in a wide pipe with mean flow and viscothermal attenuation, Journal of Sound and Vibration 208(4)

(1997) 653–655] is also in good agreement with the experimental data.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. General

There are two standards methods for measuring in-duct acoustic properties; the standing wave ratio (SWR)
and the two-microphone method (TMM) [1,2]. Although the SWR method can yield accurate results in a
stationary medium, it is very time consuming; especially in measuring the acoustic properties for a wide
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www.elsevier.com/locate/jsvi


ARTICLE IN PRESS
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frequency range with a linear frequency step and it is difficult to apply in a turbulent mean flow [3]. By using
the TMM with broadband excitation, acoustic properties can be determined over a very wide frequency range
and the measurement can be much faster than with the SWR method. However, to accurately cover
sufficiently large frequency ranges with a desired accuracy normally more than one microphone spacing is
needed [4,5]. Many works have been devoted to the analysis of the accuracy of the TMM [6–11]. Fujimori et
al. [12] introduced the least-squares method based on the data sampled at multiple measurement points, and
Pope [13] showed that the least-squares method using broadband excitation and the transfer function between
two measuring points is actually equivalent to the TMM. Chu [4,5] reported that the least-squares method
gives more accurate results than the TMM if the measurement is performed at multiple points. However, the
measuring sensor positions were chosen arbitrarily in his work and no guideline based on an analytical
investigation has been given. Jones and Parrott [14] suggested a multi-point method using least-squares
estimation with pure tone excitation. Seung-Ho et al. [15] showed that improved measurement results can be
obtained by adopting additional measurement points evenly spaced within half a wavelength and using the
least-squares method with broad-band excitation.

All the previous works presented and summarized above suggest that the complex wavenumbers k7 are
known, based on theoretical or empirical formulas [16–21]. For the case with no flow and a duct where wall
vibrations can be neglected, the wavenumber for circular cross-sections can be calculated from the Kirchhoff
solution for plane waves in a thermo-viscous fluid [22]. With a mean flow the situation is more complex and no
complete theory exists [16–21].

Investigations of plane wave damping in ducts have been carried out, for instance, by Ronneberger and
Ahrens [23] and Peters et al. [24]. Ronneberger and Ahrens [23] used 10 microphones and a regression analysis
to measure the wavenumbers in a turbulent pipe flow. The damping investigation was done at two fixed
frequencies at varying flow Mach numbers. The full plane wave decomposition method described in this paper
is similar to the method proposed by Ronneberger and Ahrens [23]. But while the latter is tailor-made for the
measurement of wave damping, the procedure described here allows simultaneous determination of both wave
amplitudes and wavenumbers. Based on the two-microphone theory Peters et al. [24] used two different
clusters of microphones to pick up the in-duct data at low frequencies up to Mach numbers Mp0:1. By
applying the standard TMM and neglecting damping between the microphones, the complex reflection
coefficient can be calculated for each cluster. By comparing the two values of the reflection coefficient at the
two clusters and taking into account the distance between the clusters (4.165m), the wave damping can be
calculated.

The underlying motivation for this study was the wish to accurately measure the reflection from an
open ended pipe with flow. In particular, to validate the famous theoretical model by Munt [25] for this
problem. Preliminary tests using the classical TMM showed that in particular the phase of the reflection
coefficient, which also can be represented as an end-correction, was difficult to measure. To minimize the effect
of errors it was therefore decided to use a multi-microphone arrangement and overdetermination. However,
since the wavenumber in particular the imaginary part associated with the damping is not accurately known in
a flow duct it was decided to also include the wavenumber as an unknown. This led to the development of the
full plane wave decomposition procedure which will be described below. As a bonus the accurate
measurements of the reflection coefficient also gave new empirical data for the damping in a duct. These data
were used to test some of the theories and models for damping of plane waves in ducts which has been
published.
1.2. Theory of the two-microphone method

In every straight cylindrical duct the sound field below the first cut-on frequency will consist only of plane
waves. In the frequency domain, the sound field can then be written as

p̂ðx; f Þ ¼ p̂þðf Þexpð�ikþxÞ þ p̂�ðf Þ expðik�xÞ,

ûðx; f Þ ¼
1

rc
p̂þðf Þ expð�ikþxÞ � p̂�ðf Þ expðik�xÞ
� �

, ð1Þ
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Fig. 1. Measurement configuration for the TMM.
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where p̂ is the Fourier transform of the acoustic pressure, û is the Fourier transform of the particle velocity, x

is the coordinate along the duct axis, f is the frequency, k is the complex wavenumber 7 denotes propagation
in positive and negative x-direction, r is the density and c is the speed of sound.

By assuming the complex wavenumbers are known in the duct, the incident and reflected wave amplitudes
p̂þ and p̂� can be calculated using two microphone positions as shown in Fig. 1.

p̂1 ¼ p̂þðf Þ þ p̂�ðf Þ, (2)

p̂2 ¼ p̂þðf Þ expð�ikþsÞ þ p̂�ðf Þ expðik�sÞ, (3)

where s represents the microphone separation. Eqs. (2) and (3) imply that

p̂þðf Þ ¼
p̂1ðf Þ expðik�sÞ � p̂2ðf Þ

expðik�sÞ � expð�ikþsÞ
, (4)

p̂�ðf Þ ¼
�p̂1ðf Þ expð�ikþsÞ þ p̂2ðf Þ

expðik�sÞ � expð�ikþsÞ
. (5)

Eqs. (4) and (5) are the basic TMM equations from which all plane wave quantities of interest can be
calculated. To use these equations in practice it is firstly necessary to compensate for the amplitude and phase
shift associated with each microphone channel. Secondly, with flow in the duct it is necessary to improve the
signal-to-noise ratio by using the source signal (loudspeaker voltage) as a reference. If we assume that the duct
has a linear and passive termination in the postive x-direction a reflection coefficient can be defined in that
direction

Rðf Þ ¼
p̂�
p̂þ

. (6)

Bodén and Åbom [8] proved that the TMM has its lowest sensitivity to errors in the input data in a region
around ks ¼ pð1�M2Þ=2, where M is the Mach number. Also Åbom and Bodén [9] suggested that to avoid a
large sensitivity to errors in the input data, the TMM should be restricted to the frequency range.

0:1p 1�M2
� �

okso0:8p 1�M2
� �

. (7)

2. Theory of the full wave decomposition method (FWDM)

Based on the measured data at N microphone positions an overdetermined nonlinear solver has been
introduced and used to predict the full in-duct acoustic properties, i.e., complex wave amplitudes p̂� and
wavenumbers k�. The sound field at the N microphones can be represented using Eq. (1) as

p̂j ¼ p̂þðf Þ expð�ikþxJ Þ þ p̂�ðf Þ expðik�xJ Þ, (8)

where J ¼ 1; 2; . . . ;N is the microphone position and 7 denote propagation in positive and negative
x-direction. To solve for the four unknowns at least 4 microphone positions are needed and to obtain
an overdetermined problem we must choose N44.

Concerning the choice of the positions there are different strategies. One being the use of a uniform
distribution over a distance corresponding to half a wavelength at the lowest frequency of interest as suggested
by Seung-Ho et al. [15]. This alternative is the best if only estimates of reflection coefficients and wave
amplitudes are of interest. If we also are interested in obtaining accurate data for the wavenumbers
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arrangements where the microphones are split into two clusters (half in each), separated by a sufficiently long
distance to produce a measurable effect of the wave damping, seems to be a logical choice [24].

2.1. Solution procedure

Based on Eq. (8) and combining the theoretical wave representation and measured data at each microphone
position with N44, an overdetermined nonlinear system of equations is obtained

FJð Þ ¼ AJð Þ � BJð Þ ¼ 0, (9)

where

AJð Þ ¼ p̂þ exp �ikþxJð Þ þ p̂� exp ik�xJð Þ
� �

; BJð Þ ¼ p̂J

� �
. (10)

Here F J yð Þð Þ ¼ 0 is an equation in CN which has to be solved to get the unknown y ¼ p̂þ kþ p̂� k�
� �T

. There
are several methods that can be used to solve an overdetermined nonlinear system of equations [26]. Here a
damped Gauss–Newton iterative procedure is used which implies

ynþ1 ¼ yn � ldðynÞ. (11)

The search direction can be calculated using the Gauss–Newton method dðyÞ ¼ DFJð Þ
TDFJ

� ��1
DFJð Þ

T F Jð Þ, where

DFJ ¼
qF J

qp̂þ

qF J

qkþ

qFJ

qp̂�

qFJ

qkþ

" #
. (12)

The derivatives are found using Eq. (10)

qF J

qp̂þ
¼ exp �ikþxJð Þ;

qFJ

qkþ
¼ p̂þ �ixJð Þ exp �ikþxJð Þ;

qF J

qp̂�
¼ exp ik�xJð Þ;

qFJ

qk�
¼ p̂� ixJð Þ exp ik�xJð Þ:

(13)

The damping factor l is initially put equal to 1, but if F yn � ldn

� �
XF yn

� �
, then l is halved. This is repeated

until F yn � ldn

� �
oF yn

� �
and the same procedure has to be repeated for each iteration step. To obtain good

initial values for the wavenumbers k7 the model suggested by Dokumaci [20] for ducts with flow is used. Then
using the TMM, the initial values of p̂� are calculated.

When the unknown vector y is known one can calculate the reflection coefficient (R) at the reference
microphone (No. 1) using Eq. (6) and transfer it to x ¼ 0. The reflection coefficient at x ¼ 0 ðR0Þ can be
written as

R0 ¼ R exp i k� þ kþð Þlð Þ, (14)

where l is the distance from microphone 1 to the termination as shown in Fig. 2. This formula is used in
Section 5 to determine the reflection properties of an unflanged pipe.

3. Description of measurement set-up

In order to test the full plane wave decomposition method described in Section 2, measurements were
performed using the flow acoustic test facility available at The Marcus Wallenberg Laboratory [27]. A circular
steel pipe of inner diameter 35mm with a wall roughness of less than 1 mm, and outer diameter 40mm was
used. In the pipe six 1

4
in microphones (B&K 4938) were flush mounted at the positions shown in Fig. 3. The

first measurement position x1 was fixed at 150mm from the open end. At room temperature the cut-on
frequency of the first higher-order mode in the test pipe is approximately 4.5 kHz.Two loudspeakers connected
to the pipe via short side branches provided the acoustic excitation. The loudspeaker sections were placed in
an anechoic room and a dissipative silencer was used to remove reflections from the upstream termination,
together with a very smooth conical diffuser which also provided a low-noise inlet flow. The unflanged
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Fig. 3. Layout of the flow test rig at the Marcus Wallenberg Laboratory. The anechoic room is used as a pressure chamber which is driven

by external fans and delivers a flow with a low acoustic noise level. Via the inlet cone and the test pipe the flow moves from the anechoic

room to the reverberant room which is kept at atmospheric pressure.

p-

p+M

Acoustic
source

Passive 
termination

x1 = 0 x2x3
xN

l

Fig. 2. Microphone positions used in the FWDM.
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opening of the pipe was placed in the middle of a reverberant room, 1.5m above a rigid floor. The nearest wall
was 2.4m from the pipe open end. Careful attention was taken to avoid flow-induced vibrations of the pipe by
using soft supports.

The microphones were flush-mounted and a source correlation technique [9] with stepped sine excitation
was adopted to suppress the flow-generated noise and get a good signal-to-noise ratio. To improve the quality
of the measurement the number of averages has been chosen to be between 400 and 1000. The measurements
were repeated three times and the average values were used in the final analysis.

To obtain the flow speed a pitot-tube positioned in the middle of the cross-section was used, see Fig. 3. The
average flow speed was obtained by assuming a fully developed turbulent flow. To calculate the speed of sound
in the duct the temperature in the anechoic chamber (air at 20 1C) was used which is correct within O(M2).
From the average flow speed and the speed of sound the Mach number was calculated. This was used to create
an initial wavenumber estimate for the nonlinear solver. The experimentally determined Mach numbers were
also used for plotting all the data. The tests with flow were performed up to Mach numbers around 0.3 but
only data up to 0.2 are used for the results presented here as explained in the next paragraph.

The pressure drop along the duct will create a variation in the density which results in a variation of the flow
speed along the duct. The Mach number and wavenumbers are therefore not exactly constant along the duct.
This effect has been discussed earlier both by Ronneberger and Ahrens [23] and Peters [24]. For the pipe
diameter used in our experiments it turns out that this effect gives an error less than 3% up to Mach numbers
around 0.2.
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3.1. Deviations from free field conditions at the pipe outlet

The influence of the rigid floor in the reverberation room on the reflection coefficient at the open end R0 can
be taken into account by assuming a mirror-image point source below the floor. The result is [28]

Rflj j � R0j j ¼ �
ðkaÞ2

4kH
sinð2kHÞ,

dfl � d ¼
a2

8H
cosð2kHÞ, ð15Þ

where H is the distance from the pipe to the floor, a is the pipe radius, Rflj j and dfl are the reflection coefficient
magnitude and the end correction measured in the presence of the floor and R0 and d are the free field values.
With the values H ¼ 1:5m and a ¼ 0:0175m, Eq. (15) implies at the most 1% change for the reflection
coefficient magnitude (high-frequency limit) and a negligible change for the end correction. In the results
presented the data has been corrected for the floor reflections neglecting the effects of the other room surfaces
as well as multiple reflections [24].

To validate and test the accuracy of the new full wave decomposition procedure the no flow case was used.
Figs. 4 and 5 compare the reflection coefficient R0j j and the end correction represented as d=a obtained for this
case, with theoretical results of Levine and Schwinger [29]. It is found that the measured results agree within
1% with the theoretical predictions.

4. Propagation of plane waves in pipes

4.1. In the absence of mean flow

Kirchhoff [22] found that the propagation of sound waves in a pipe is dissipative because of visco-thermal
losses at the pipe walls. His solution for a wide pipe shows that the wavenumber, k ¼ o=c0, is modified to kK0,
where the propagation constant K0 is given by

K0 ¼ 1þ
ð1� iÞffiffiffi

2
p

s
1þ
ðg� 1Þ

x

� �
�

i

s2
1þ

g� 1

x
�

g
2

g� 1

x2

� �
. (16)

Here g is the specific heat ratio, x2 ¼ mCp

�
kth is the Prandtl number, s ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0o=m

p
is the shear

wavenumber, m is the dynamic viscosity, kth is the thermal conductivity, Cp is the specific heat coefficient and a
Fig. 4. Reflection coefficient magnitude versus Helmholtz number at M ¼ 0 and T ¼ 293K: +++, measured and —, predicted using

Levine and Schwinger [29].
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Fig. 5. End correction versus Helmholtz number at M ¼ 0 and T ¼ 293K: +++, measured and —, predicted using Levine and

Schwinger [29].
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is the pipe radius. Kirchhoff’s solution is valid for a homogenous medium in the absence of a mean flow. The
damping in a quiescent fluid a0 is given by the negative imaginary part of Eq. (16) multiplied by the
wavenumber as

a0 ¼
o
c0

1ffiffiffi
2
p

s
1þ

g� 1

x

� �
þ

1

s2
1þ

g� 1

x
�

g
2

g� 1

x2

� �� �
. (17)

The s�2 term is very small and is usually neglected in the literature, see Pierce [30]. The visco-thermal losses
in the fluid itself is given by Pierce [30] as

afluid ¼
o
c0

ðkaÞ2

2s2
4

3
þ

mb

m
þ

g� 1

x2

� �
, (18)

where mb is the bulk viscosity which for air, is approximately 0.6m. This contribution to the damping is two
orders of magnitude smaller than the lossses at the walls and will be neglected.

4.2. The effect of convection

The mean flow speed U0 influences the wavenumbers for up- and downstream propagating acoustic waves.
In the literature a number of formulas and models have been presented to describe this effect and the aim of
this section is to point out if these formulas and models agree with our experimental results. It can also be
noted that there exist relatively few experimental validations for some of the existing formulas. The two most
detailed are the works of Ronneberger and Ahrens [23] and Peters [24].

A one-dimensional ad hoc extension of the Kirchhoff solution [22] to the visco-thermal acoustic wave
motion in a pipe carrying a uniform mean flow has been described by Davies et al. [16]. Davies argues that the
propagation constant should be modified into

K� ¼ K0= 1�Mð Þ, (19)

where M denotes the (average) Mach number of the mean flow and K0 is the classical Kirchoff solution. A
theoretical solution to the problem of visco-thermal acoustic wave motion in pipes with flow has also been
proposed by Dokumaci [20]. The solution is obtained by asymptotic expansion, for large shear wavenumbers
s� 1 and small mean flow Mach numbers, of the solution of the convective acoustic equations simplified in
the manner of the Zwikker and Kosten theory [21]. For the no flow case this solution is known to represent the
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Fig. 6. Predicted a�=a0 by Dokumaci [20],— and by Davies [16], - - - - at ka ¼ 0:0323. Predicted aþ=a0 by Dokumaci [20], -.-.-. and by

Davies [16], � � � � � at ka ¼ 0:0323.
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full Kirchhoff solution accuratly for large shear wavenumbers. In this asymptotic theory the propagation
constants are given by

K� ¼ K0= 1� K0Mð Þ. (20)

An example of the difference between the predicted damping from the two models for the pipe used in the
test rig is shown in Figs. 6 and 7. As can be seen from these figures the difference between the two models can
be more than 10% for high Mach numbers.
4.3. The effect of turbulence

In the presence of a turbulent flow the damping of the acoustic waves is influenced by the action of the
turbulent stresses if the acoustic boundary layer thickness dac is larger than that the viscous sublayer dl [23,24].
The acoustic boundary is defined as: dac ¼

ffiffiffiffiffiffiffiffiffiffiffi
2v=o

p
and the viscous sublayer of a turbulent pipe flow is defined

as: dl � 10v=un, where v is the kinematic viscosity, un ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tw=r0

p
is the friction velocity, tw is the wall shear

stress and r0 the fluid density. The effect of turbulence can be described in the first-order approximation by
adding to the kinematic viscosity an eddy viscosity, which is non-uniform over the pipe cross-section. The
eddy viscosity is small compared to the kinematic viscosity for distances from the wall (y) small compared to
the thickness of sublayer dl . For y4dl , i.e. in the logarithmic region of the turbulent boundary, the eddy
viscosity increase approximately linear with the distance from the wall.

Ingard and Singal [18] have derived a quasi-stationary theory for the damping in the region where the
acoustic boundary layers are much larger than the viscous sublayer. In practice, this implies a model valid for
very low frequencies typically much less than 100Hz.The wavenumbers can be calculated using

kþ ¼
k0 � ik0

1þM
; and k� ¼

k0 � ik0

1�M
, (21)

where k0 ¼ 2pf =c and k0 ¼ k0v þ k0t, represent the attentuation, the first part refer to the visco-thermal and the
second refer to the turbulent effect. These attenuation terms are given by [18]

k0v ¼
1

2D

mpf

rc2

� �1=2

1þ
g� 1ð Þ

x

	 

and k0t ¼

CM

2D
1þ

C0Re

2C

	 

(22)
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Fig. 7. —, differences da�=a0 between Dokumaci [20] and Davies [16] at ka ¼ 0:0323. -.-.-., differences daþ=a0 between Dokumaci [20] and

Davies [16] at ka ¼ 0:0323.
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where D is the ratio between the duct cross-section area and its perimeter, Re is the Reynolds number, C is the
turbulent flow friction factor and C0 ¼ qC=qRe, which is a function of Reynolds number and defined as

1ffiffiffiffi
C
p ¼ 2 log10 Re

ffiffiffiffi
C
p� �

� 0:8. (23)

The visco-thermal term in Eq. (22) is simply the damping from the classical Kirchhoff model and
corresponds to the first term in Eq. (17). As discussed for instance by Peters et al. [24] the model of Ingard and
Singhal [18] represents a very crude approximation, which also agrees poorly with available experimental data.

Peters et al. [24] proposed a modification of a rigid core model originally proposed by Ronneberger and
Ahrens [23], by including a phase shift in the reflection of the shear waves which corresponds to a memory
effect in the turbulent flow. The result they obtained is

a�
a0
¼

1þ exp �2 1þ ið Þ dl=dac
� �

� 200i dl=dac
� �2� �

1� exp �2 1þ ið Þ dl=dac
� �� �� �

0
@

1
A 1

1�M

� �
, (24)

where dl � 12:5v=un, dac ¼
ffiffiffiffiffiffiffiffiffiffiffi
2v=o

p
and un ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
tw=r0

p
.

The most complete model developed so far is the one proposed by Howe [19]. This model is based on
averaging the momentum and continuity equations over the cross-sectional area, A and use eddy viscosity to
control the momentum and the thermal boundary layers. The model assumes that the thickness of these
boundary layers is much smaller than the acoustic wavelength so that the layers can be described using an
effective acoustic admittance. The resulting damping of the plane wave is given by

a� ¼

ffiffiffiffiffiffi
2o
p

c0Dp 1�Mð Þ
Re

ffiffiffi
2
p

exp �ip=4
� � ffiffiffi

v
p

1�Mð Þ
2
� FA

ffiffiffiffiffiffiffiffiffiffi
iov

k2ku2
n

s
; dv

ffiffiffiffiffi
io
v

r ! (

þ
bc20

ffiffiffi
w
p

Cp

� F A x2
ffiffiffiffiffiffiffiffiffiffi
iow
k2ku2

n

s
; dv

ffiffiffiffiffi
io
w

s !!)
, ð25Þ

where

FAða; bÞ ¼
i H1

1ðaÞ cosðbÞ �H1
0 að Þ sinðbÞ

� �
H1

0ðaÞ cosðbÞ þH1
1ðaÞ sinðbÞ

, (26)
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w ¼ kth=r0Cp, which for air at 20 1C is equal to 2� 10�5 m2/s, kK � 0:41, b ¼ 1=T and T is absolute
temperature, Dp ¼ 4A=lp is the hydraulic diameter, Re is the real part, HJ is the Hankel function of order J

and the friction velocity is calculated from

U0=un ¼ 2:44 ln unDp

�
2v

� �
þ 2:0. (27)

The viscous sublayer (dv) in Eq. (25) is frequency dependent and is calculated from

dvun

v
¼ 6:5 1þ

1:7 o=on

� �3
1þ o=on

� �3
 !

; onv
�

u2
n
� 0:01 and o40. (28)
Fig. 8. Damping coefficient a�=a0 as a function of dþA at ka ¼ 0:0323: , measured a�=a0, - - - -, predicted by Howe [19], -.-.-., predicted

by Dokumaci [20]. JJJ, measured aþ=a0, —, predicted by [19], � � � � � , predicted by Dokumaci [20].

Fig. 9. Damping coefficient a�=a0 as a function of dþA at ka ¼ 0:0808: , measured a�=a0, - - - -, predicted by Howe [19], -.-.-., predicted

by Dokumaci [20]. JJJ, measured aþ=a0, —, predicted by Howe [19], � � � � � , predicted by Dokumaci [20].
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Fig. 10. Average damping coefficient aav=a0 as a function of dþA : —, predicted by Howe [19] at ka ¼ 0:032, -.-.-., predicted by Dokumaci

[20] at ka ¼ 0:032; JJJ, measured aav=a0 at ka ¼ 0:0162, +++, measured aav=a0 at ka ¼ 0:032; , measured aav=a0 at ka ¼ 0:0808;
&&&, measured aav=a0 at ka ¼ 0:1455; BBB, measured aav=a0 at ka ¼ 0:2425; nnn, measured aav=a0 at ka ¼ 0:3234; ***, measured

aav=a0 at ka ¼ 0:6468; � � � , measured aav=a0 at ka ¼ 0:9702; ��� , measured aav=a0 at ka ¼ 1:2936.
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In the next section the comparison between the measured and calculated damping coefficients (a7) and
the average value, aav ¼ ðaþ þ a�Þ=2 are presented, plotted versus the normalized boundary layer thickness
dþA ¼ 2u2

n
=vo

� �1=2
.

4.4. Comparison with experimental data

In Figs. 8 and 9, the models of Howe [19] and Dokumaci [20] are compared with experimental data at a
fixed frequency for varying Mach numbers. The data is collapsed by plotting against the normalized boundary
layer thickness dþA [23,24]. As can be seen from the figures both models agree well with the data up to dþA � 10.
But Howe’s model works well up to dþA values in the range 30–40. In Fig. 10, the average damping (sum of
+/�) is presented. The conclusions are similar to what was said in relation to Figs. 8 and 9.

5. Sound reflection at an open end

This is a classical problem in acoustics that is important for instance for the radiation of sound from exhaust
tailpipes. The classical solution to the problem of radiation from an unflanged open ended pipe into a free
space was given by Levine and Schwinger [29]. This solution was later extended to include the effects of a mean
flow by Munt [25]. The model of Munt has only been validated partly by the published experimental data and
in particular accurate measurements of the phase of the reflection coefficient are lacking.

5.1. Effect of mean flow

In this section, the experimental results have been compared with the theoretical model presented by Munt
[25] for the transmission of acoustic waves out of a semi-infinite circular pipe in the presence of subsonic flow
out of the pipe. The model consists of a rigid circular pipe, with walls of negligible thickness; described by
r ¼ a and zp0 in cylindrical polar coordinates ðr; y; zÞ, see Fig. 11. A gaseous jet of fluid is assumed to leave
the pipe with a Mach number Mo1 and to be separated from the ambient gas, in r4a, by an infinitely thin
vortex sheet occupying r ¼ a, z40. The ambient gradient gas is taken to be flowing more slowly than the jet
and in the same direction. The ratio of the speed of the ambient gas to that of the jet is denoted by Z, so that



ARTICLE IN PRESS

Vortex sheet  Pipe  

adensity �j

fluid speed M

speed of sound cj

density Ω�j

fluid speed M�cj 

speed of sound cj/C

z 

r 

cj

Fig. 11. Parameters used in the Munt [25] model.
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0pZp1. Inside the jet fluid is taken to have density rj, the speed of sound cj and the fluid velocity Mcj. Outside
the jet fluid is taken to have density Orj , the speed of sound cj=C and the fluid speed MZcj.

Hence, the non-dimensional quantities Z, O and C express the ratios of the mainstream value to the jet value
for density, velocity and speed of sound, respectively.

The Munt solution is expressed in the form of integral equations which have been solved numerically in the
presence of a uniform subsonic mean flow (plug flow) and for low acoustic amplitudes ðûac=Mcj � 1Þ [31]. In
the theory a Kutta condition (smooth separation at the trailing edge) is applied at the pipe opening, which
implies a finite velocity and no pressure fluctuations at the edge. The Kutta condition implies that an acoustic
disturbance in the jet can create a transfer of acoustic energy into kinetic energy in the jet vortex sheet. The
Kutta condition also implies that the magnitude of the pressure reflection coefficient approaches a value of
�1.0 for all Mach numbers if the Helmholtz number approaches zero, i.e.,

limR0
ka!0

¼ �1 for all M. (29)

From the comparison between the experimental results and Munt’s theory, better agreement is found when
R0j j is calculated based on the maximum flow speed in the duct rather than the average. This can be argued
based on the investigation by Freymuth [32] on the growth of disturbances at the outlet of a circular jet. In the
Munt theory the convection speed of the vortical disturbances is Mcj=2, assuming a zero flow on the outside as
in the experiments. As shown by Freymuth in the real jet there is a distribution of vorticity which has a
maximum at the position r ¼ a, i.e., at the vortex sheet in the Munt model. The convection speed at this
position is Umax/2 or half the maximum speed at r ¼ 0. Since the interaction between the acoustic field and the
convected vortical disturbances is an important part of Munts model, it is logical to choose the flow speed so
that the correct vortex convection speed is preserved, i.e, to use Umax rather than the average flow speed for the
comparison theory-measurement. All the results presented below is based on the maximum flow speed for the
Munt’s theory and average flow speed for the experimental data. Fig. 12 shows that there is a very good
agreement between the predicted and measured data for the magnitude of the reflection coefficient especially
at low Helmholtz-numbers ka. In Fig. 13 the same data is presented as a function of the Strouhal-number
ðSt ¼ ka=MÞ. It can be noted that all curves have a maximum at the same St-number.

The boundary condition at an open end is for low frequencies always equal to zero acoustic pressure. This
corresponds to a reflection coefficient of �1 and a phase of p. The end correction for an open end can then be
defined as the necessary distance d an open pipe has to be extended to create this low frequency limit value for
the phase. The reflection coefficient at the opening can be written as R0 ¼ R0j j expðiyÞ. Moving this a distance
d gives

Rd ¼ R0j j exp iðkþ þ k�Þdþ iy½ 	. (30)

To create a phase angle equal to p the end correction d becomes

d
a
¼

p� y
Re kþ þ k�ð Þa

�
p� yð Þ 1�M2

� �
2ka

. (31)
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Fig. 12. Measured and predicted reflection coefficient magnitude at different at Helmholtz and Mach numbers: JJJ, measured at

M ¼ 0:05, - - - -, predicted at M ¼ 0:05 by Munt [25]; &&&, measured at M ¼ 0:10, yy, predicted at M ¼ 0:10; BBB, measured at

M ¼ 0:15, ����, predicted at M ¼ 0:15 by Munt [25]; ***, measured at M ¼ 0:20, -.-.-., predicted at M ¼ 0:20 by Munt [25].

Fig. 13. Measured and predicted reflection coefficient magnitude at different Strouhal numbers: JJJ, measured at M ¼ 0:05, - - - -,
predicted at M ¼ 0:05 by Munt [25]; &&&, measured at M ¼ 0:10, yy, predicted at M ¼ 0:10 by Munt [25]; BBB, measured at

M ¼ 0:15, ����, predicted at M ¼ 0:15 by Munt [25]; ***, measured at M ¼ 0:20, -.-.-., predicted at M ¼ 0:20 by Munt [25].
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Rienstra [33] found a discontinuous behaviour of the end correction. For low frequencies ka, when M ¼ 0
the end correction attains the same value as found by Levine and Schwinger [29], i.e.,

lim
M¼0;ka!0

d=a ¼ 0:6133. (32)

But for any positive M � 1 Rienstra [33] found

lim
ka!0

d=a ¼ 0:2554
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
. (33)

Concerning earlier measurements of an open end with flow Davies et al. [16] report that with flow present,
the value of the end correction might be reduced at very low Helmholtz numbers. But the measurements were
Fig. 14. Measured and predicted end correction at different Helmholtz and Mach number: +++, measured at M ¼ 0, —, predicted at

M ¼ 0 by Levine and Schwinger [29]; JJJ, measured at M ¼ 0:05, - - - -, predicted at M ¼ 0:05 by Munt [25]; &&&, measured at

M ¼ 0:10, y.., predicted at M ¼ 0:10 by Munt [25]; BBB, measured at M ¼ 0:15, ����, predicted at M ¼ 0:15by Munt [25]; ***,

measured at M ¼ 0:20, -.-.-., predicted at M ¼ 0:20 by Munt [25].

Fig. 15. Measured and predicted end correction at different Strouhal numbers: JJJ, measured at M ¼ 0:05, - - - -, predicted at M ¼ 0:05
by Munt [25]; &&&, measured at M ¼ 0:10,y.., predicted at M ¼ 0:10 by Munt [25]; BBB, measured at M ¼ 0:15, ����, predicted
at M ¼ 0:15 by Munt [25]; ***, measured at M ¼ 0:20, -.-.-., predicted at M ¼ 0:20 by Munt [25].
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not conclusive since they did not cover this range adequately. Therefore, the conclusion was that the effect is
small and can be neglected, i.e., that the no flow value can be used. The data presented here together with the
low-frequency data of Peters et al. [24] clearly show that the end correction is strongly reduced at low
Helmholtz and Strouhal numbers and that the limit suggested by Rienstra [33] seems correct.

In Figs. 14 and 15, the theoretical prediction using the maximum flow speed in the pipe is compared with the
experimental data. It is clear from the comparison that there is a very good agreement between the measured
and predicted data.

The end correction is strongly affected by the flow at low Helmholtz numbers. The lowest measured limit for
the magnitude of the reflection coefficient is 1.005 at ka ¼ 0:0162 and the lowest limit for the end correction is
0.265 at St ¼ 0:15, which is close to the value predicted by Rienstra [33]. It can also be noted that
with increasing Helmholtz number the end correction values move toward the no flow case as can be seen from
Fig. 14.

6. Summary and conclusions

A new full plane wave decomposition method that determines both wave amplitudes and wavenumbers
from measured acoustic pressures using an array of microphones is suggested. The formalism for the new
method is developed and then the method is applied to study the effect of flow on damping of plane waves and
on the reflection of sound from an unflanged open pipe termination. With respect to the damping it has been
fund that Dokumaci’s model [20] can be used when dþAo10 and Howe [19] can be used up to dþAE30–40.
Concerning the reflection from an open end it has been found that the theory of Munt [25] combined with the
maximum flow speed rather than the average, gives a very good agreement with the measured results. To
continue this study measurements at higher Mach numbers are of interest. Here, the maximum value used in
the analysis was around 0.20. Experimental tests of the Munt theory [25] with hot gases or two gases with
different acoustic properties are also of interest.
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